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Abstract
We consider equations of the form

(D(ρ)u)(t) = −λu(t), t > 0,

where λ > 0, D(ρ) is a distributed order derivative, that is

D(ρ)ϕ(t) =
∫ 1

0
(D(α)ϕ)(t) dρ(α),

where D
(α) is the Caputo–Dzhrbashyan fractional derivative of order α, ρ is a

positive measure.
The above equation is used for modeling anomalous, non-exponential

relaxation processes. In this work, we study the asymptotic behavior of
solutions of the above equation, depending on the properties of the measure ρ.

PACS numbers: 02.30.−f, 05.90.+m, 87.10.Ed

1. Introduction

Anomalous, non-exponential, relaxation processes occur in various branches of physics; see,
e.g., [3, 18, 21] and references therein. Just as the exponential function e−λt (λ > 0)

appearing in the description of classical relaxation is a solution of the simplest differential
equation, u′ = −λu (with the initial condition u(0) = 1), new kinds of derivatives are used to
obtain models of slow relaxation.

It is now generally accepted that the power law of relaxation corresponds to the Cauchy
problem:

(D(α)u)(t) = −λu(t), t > 0, u(0) = 1, (1)

where

(D(α)u)(t) = 1

�(1 − α)

[
d

dt

∫ t

0
(t − τ)−αu(τ) dτ − t−αu(0)

]
(2)

is the Caputo–Dzhrbashyan fractional derivative of order α ∈ (0, 1); we refer to [7, 13] for
various notions and results regarding fractional differential equations. The solution of problem
(1) has the form u(t) = Eα(−λtα), where Eα is the Mittag–Leffler function, and u(t) ∼ Ct−α
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(here and below we denote various positive constants by the same letter C), as t → ∞. This
kind of evolution describes the temporal behavior related to α-fractional diffusion typical for
fractal media.

A still slower, logarithmic relaxation [11, 16] is described by the Cauchy problem:

(D(μ)u)(t) = −λu(t), t > 0, u(0) = 1, (3)

where

(D(μ)u)(t) =
∫ 1

0
(D(α)u)(t)μ(α) dα, (4)

where μ is a non-negative continuous function on [0, 1]. A rigorous mathematical treatment
of problem (3) for general classes of the weights μ was given in [14, 15]. Some nonlinear
equations with distributed order derivatives were studied in [1]. As above, this kind of
relaxation models is connected with models of ultraslow diffusion [4, 10, 12, 14, 17, 22];
these papers contain further references on related subjects.

Let uλ(t) be the solution of problem (3) (the notation is changed slightly, compared to
[14]). If μ(0) �= 0, then

uλ(t) ∼ C(log t)−1, t → ∞. (5)

If μ(α) ∼ aαν, α → 0 (a > 0, ν > 0), then

uλ(t) ∼ C(log t)−1−ν, t → ∞. (6)

It was assumed everywhere in [14] that μ ∈ C3[0, 1] and μ(1) �= 0; in fact, in the
investigation of the asymptotic behavior of uλ we use only that μ ∈ L1(0, 1). Therefore, the
arguments in [14] cover the case, where

μ(α) ∼ aα−ν, α → 0,

with a > 0, 0 < ν < 1, and yield the asymptotics

uλ(t) ∼ C(log t)−1+ν, t → ∞. (7)

In all the above cases, the exponential function e−λt , the Mittag–Leffler powerlike
evolution Eα(−λtα) and all the logarithmic evolutions (5)–(7), the resulting functions are
completely monotone, that is (−1)ju

(j)

λ (t) � 0, j = 0, 1, 2, . . ., for all t.
In this paper, we look for other possible relaxation patterns corresponding to the weight

functions μ tending to 0 (at the origin) faster than the power function (section 2) or to the
definition of the distributed order derivative not by formula (4) but by the expression

(D(ρ)u)(t) =
∫ 1

0
(D(α)u)(t) dρ(α), (8)

where ρ is a jump measure (section 3). In these cases, the solutions remain completely
monotone while their asymptotic behavior can be quite diverse, from the iterated logarithmic
decay to a function decaying faster than any power of logarithm but slower than any power
function.

2. The main constructions

Suppose that ρ is a positive finite measure on [0, 1] not concentrated at 0, and consider the
distributed order derivative (8). Substituting (2) into (8), we find that

(D(ρ)u)(t) = d

dt

∫ t

0
k(t − τ)u(τ) dτ − k(t)u(0), (9)
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where

k(s) =
∫ 1

0

s−α

�(1 − α)
dρ(α), s > 0. (10)

The right-hand side of (9) makes sense for a continuous function u, for which the derivative
d
dt

∫ t

0 k(t − τ)u(τ) dτ exists.
It is clear from (10) that k ∈ Lloc

1 (0,∞), and k is decreasing. Therefore, the function k
possesses the Laplace transform:

K(p) =
∫ ∞

0
k(s) e−ps ds =

∫ 1

0
pα−1 dρ(α), Re p > 0.

The holomorphic function, K(p), can be extended analytically onto the whole complex plane
cut along the half-axis R− = {Im p = 0, Re p � 0}. Obviously, K(p) → 0, as |p| → ∞
(a precise asymptotics is found for some cases in [14] and section 3 below).

Note that if we consider the moments of the measure ρ,

Mn =
∫ 1

0
xn dρ(x),

and introduce their generating function,

M(z) =
∞∑

n=0

Mn

zn

n!
=

∫ 1

0
exz dρ(x),

then K(p) = p−1M(log p). The moment generating functions were studied by a number of
authors (for example, [5, 20]).

Considering the relaxation equation,

(D(ρ)u)(t) = −λu(t), t > 0, (11)

with λ > 0, we apply formally the Laplace transform (which is justified post factum, using
the smoothness properties and the asymptotic behavior of the solution).

For the Laplace transform ũλ(p) of the solution uλ(t) of equation (11) satisfying the initial
condition uλ(0) = 1, we get the expression

ũλ(p) = K(p)

pK(p) + λ
. (12)

Since pK(p) → ∞, as p → ∞, we have ũλ(p) ∼ p−1, p = σ + iτ, σ, τ ∈ R, |τ | → ∞.
Therefore [6], ũλ is the Laplace transform of some function uλ(t), and for almost all t,

uλ(t) = d

dt

1

2π i

∫ γ +i∞

γ−i∞

ept

p

K(p)

pK(p) + λ
dp. (13)

Note that for p ∈ C\R− we have

Im pK(p) =
∫ 1

0
|p|α sin(α arg p) dρ(α),

so that Im pK(p) = 0 only for arg p = 0. This means that pK(p) + λ �= 0, and representation
(13) is valid for an arbitrary γ > 0.

As in [14], in the present more general situation we deform the contour of integration,
and then differentiate under the integral, so that

uλ(t) = 1

2π i

∫
Sγ,ω

ept K(p)

pK(p) + λ
dp, (14)
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where the contour Sγ,ω consists of the arc,

Tγ,ω = {p ∈ C : |p| = γ, | arg p| � ωπ}, 1
2 < ω < 1,

and two rays,

�±
γ,ω = {p ∈ C : | arg p| = ±ωπ, |p| � γ }.

Just as in the case of a measure ρ with a smooth density considered in [14], it is easy
to show that the function uλ belongs to C∞(0,∞) and is continuous at the origin; from its
construction and formula (9), it follows that the initial condition, uλ(0) = 1, is indeed satisfied.

Let us consider first the case of a measure ρ with a continuous density, dρ(α) = μ(α) dα.
This case was investigated in [14], and was proved that uλ is completely monotone (various
additional assumptions made in [14] and needed for other problems studied in that paper were
not actually used here).

In this paper, we consider the case of a different behavior of the density μ near the origin,
implying a different asymptotics of uλ(t), as t → ∞.

Theorem 1. If μ ∈ C[0, 1] and

μ(α) ∼ aαγ e− β

α , as α → 0,

where a > 0, γ > −1, β > 0, then

uλ(t) ∼ C(log t)−
γ

2 − 3
4 e−2

√
β(log t)

1
2
, t → ∞. (15)

Proof. Let us write K(p) as

K(p) = p−1
∫ ∞

0
e−αzμ1(α) dα, z = log

1

p
,

where μ1 is the extension of μ by zero onto R+, and use an asymptotic result for Laplace
integrals from [19] (theorem 13.1, case 9). We get

K(p) ∼ 2ap−1

(
β

z

) γ +1
2

Kγ +1(2
√

βz), p → +0,

where, as before, z = log 1
p

(→ ∞), Km is the McDonald function. It is well known that

Km(t) ∼ (
π
2

)1/2
t−1/2 e−t , t → ∞, so that

K(p) ∼ Cp−1L

(
1

p

)
, p → +0, (16)

where

L(s) = (log s)−
γ

2 − 3
4 e−2

√
β(log s)

1
2
.

It follows from (16) (or directly from the definition ofK(p)) that pK(p) → 0, as p → +0.
Therefore, by (12),

ũλ(p) ∼ λ−1K(p), as p → +0.

Since we have already known that the function uλ is monotone, we may apply the Karamata–
Feller Tauberian theorem (see chapter XIII in [9]) which implies the desired asymptotics of
uλ(t), t → ∞. �

In the case under consideration, the function uλ(t) decreases at infinity slower than any
negative power of t, but faster than any negative power of log t . It is also seen from (15) that
the decrease is accelerated if β > 0 becomes bigger, so that the less the weight function μ is
near 0, the faster is the relaxation for large times.
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3. The step Stieltjes weight

Let us consider the case where the integral in (8) is a Stieltjes integral corresponding to a
right continuous non-decreasing step function ρ(α). In order to investigate a sufficiently
general situation, we assume that the function ρ has two sequences of jump points, βn and
νn, n = 0, 1, 2, . . ., where βn → 0, νn → 1, β0 = ν0 ∈ (0, 1). We may assume that the
sequence {βn} is strictly decreasing while {νn} is strictly increasing.

Denote �ρ(t) = ρ(t) − ρ(t − 0), ξn = �ρ(βn) (n � 0), ηn = �ρ(νn) (n � 1); we have
ξn, ηn > 0 for all n. It will be convenient to assume that β0 < e−1 and to write η0 = 0. Since
ρ is a finite measure, we have also

∞∑
n=0

ξn < ∞,

∞∑
n=0

ηn < ∞. (17)

By (10),

k(s) =
∞∑

n=0

ξn

�(1 − βn)
s−βn +

∞∑
n=1

ηn

�(1 − νn)
s−νn , s > 0,

so that

K(p) =
∞∑

n=0

ξnp
βn−1 +

∞∑
n=1

ηnp
νn−1. (18)

As before, we denote by uλ(t) the solution of the relaxation equation (11) with the initial
condition uλ(0) = 1. The symbol f 	 g will, as usual, mean that f = O(g) and g = O(f ).

Theorem 2. (i) The function uλ is completely monotone.

(ii) uλ(x) 	
∞∑

n=0

[
ξn

�(2 − βn)
x−βn +

ηn

�(2 − νn)
x−νn

]
, x → ∞. (19)

(iii) If
∑∞

n=0 ξn

(
log log 1

βn

)b
< ∞ (b > 0), then

uλ(x) = O

(
1

(log log x)b

)
, x → ∞. (20)

(iv) If
∑∞

n=0 ξnβ
−b
n < ∞ (b > 0), then

uλ(x) = O

(
1

(log x)b

)
, x → ∞. (21)

Proof. Using representation (14) and following [14], we can write

uλ(t) = 1

2π i

∫
Tγ,ω

ept K(p)

pK(p) + λ
dp +

1

π
Im

∫ ∞

γ

r−1 etr eiωπ

dr

− λ

π
Im

∫ ∞

γ

etr eiωπ

r (r eiωπK(r eiωπ) + λ)
dr

def= J1 + J2 − J3.

Let us substantiate passing to the limit as γ → 0.
As p → 0, pK(p) → 0, so that∣∣∣∣ K(p)

pK(p) + λ

∣∣∣∣ � C

∞∑
n=0

(ξnp
βn−1 + ηnp

νn−1),

5
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whence

|J1| � C eγ t

∞∑
n=0

(ξnγ
βn + ηnγ

νn) → 0,

as γ → 0. It was shown in [14] that

J2 −→ − 1

π

∫ ∞

0
s−1 e−s sin(s tan ωπ) ds,

as γ → 0.
The integral J3 is the sum of

I1 = λ

π

∫ ∞

γ

Im

(
etr eiωπ

r

)
Re

(
1

r eiωπK(r eiωπ) + λ

)
dr

and

I2 = λ

π

∫ ∞

γ

Re

(
etr eiωπ

r

)
Im

(
1

r eiωπK(r eiωπ) + λ

)
dr.

We have

Im

(
etr eiωπ

r

)
= r−1 etr cos ωπ sin(tr sin ωπ),

and this expression has a finite limit, as r → 0. Since also pK(p) → 0, as p → 0, we see
that we may pass to the limit in I1, as γ → 0.

Let

�(r, ω) = Im
1

r eiωπK(r eiωπ) + λ
.

Substituting (18) and denoting

G(r, ω) =
{ ∞∑

n=0

[ξnr
βn cos(ωπβn) + ηnr

νn cos(ωπνn)] + λ

}2

+

{ ∞∑
n=0

[ξnr
βn sin(ωπβn) + ηnr

νn sin(ωπνn)]

}2

we find that

�(r, ω) = −
∑∞

n=0[ξnr
βn sin(ωπβn) + ηnr

νn sin(ωπνn)]

G(r, ω)
.

The denominator tends to λ2, as r → 0. Noting that

Re

(
etr eiωπ

r

)
= r−1 etr cos ωπ cos(tr sin ωπ)

and using (17) we find that the integrand in I2 belongs to L1(0,∞).
Passing to the limit γ → 0 we obtain the representation

uλ(t) = − 1

π

∫ ∞

0
s−1 e−s sin(s tan ωπ) ds − λ

π

∫ ∞

0
r−1 etr cos ωπ sin(tr sin ωπ)�(r, ω) dr

− λ

π

∫ ∞

0
r−1 etr cos ωπ cos(tr sin ωπ)�(r, ω) dr

where

�(r, ω) =
∑∞

n=0[ξnr
βn cos(ωπβn) + ηnr

νn cos(ωπνn)] + λ

G(r, ω)
.

6
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Next, let us pass to the limit, as ω → 1. It follows from the Lebesgue theorem that the
first two integrals tend to zero, and we get

uλ(t) = λ

π

∫ ∞

0
r−1 e−tr

∑∞
n=0[ξnr

βn sin(πβn) + ηnr
νn sin(πνn)]

G(r, 1)
dr,

that is, up to a positive factor, uλ is the Laplace transform of a locally integrable non-negative
function bounded at infinity. Therefore, uλ is completely monotone.

(ii) It will be convenient to turn to the Laplace–Stieltjes transform instead of the Laplace
transform. Set

�(x) =
∫ x

0
k(s) ds, vλ(x) =

∫ x

0
uλ(s) ds,

so that the Laplace–Stieltjes transforms are as follows:

�̂(p) =
∫ ∞

0
e−px d�(x) = K(p), v̂λ(p) = ũλ(p).

By (12), v̂λ(p) = l(p)̂�(p) where l(p) = 1
pK(p)+λ

is a slowly varying function near the origin.
We have

�(x) =
∞∑

n=0

ξn

�(2 − βn)
x1−βn +

∞∑
n=1

ηn

�(2 − νn)
x1−νn , x > 0. (22)

The function � is monotone increasing. Denote

�∗(ζ ) = lim sup
x→∞

�(ζx)

�(x)
, ζ > 1.

Since βn, νn ∈ (0, 1), we find that

�(ζx) � ζ�(x), (23)

so that �∗(ζ ) � ζ . Thus, � is an O-regularly varying function (see [2], especially corollary
2.0.6).

On the other hand, it is seen from (22) that �∗(ζ ) � 1 for ζ > 1, so that �∗(+1) = 1. Thus
we are within the conditions of the ‘ratio Tauberian theorem’ ([2], theorem 2.10.1), which
yields the relation vλ(x) ∼ l

(
1
x

)
�(x), x → ∞, so that

vλ(x) ∼ C�(x), x → ∞. (24)

In order to pass from (24) to (19), we have to check further Tauberian conditions. Since
uλ is completely monotone, it is, in particular, non-increasing, thus belonging to the class BI
(see section 2.2 in [2] for the definitions of this class and the class PI used below). It follows
from (23) that also � ∈ BI.

Next,

�(x) �
∞∑

n=0

ξn

�(2 − βn)
x1−βn +

η1

�(2 − ν1)
x1−ν1 .

Since ζ 1−βn � ζ 1−ν1 for ζ > 1, we have

�(ζx)

�(x)
� ζ 1−ν1

∑∞
n=0

ξn

�(2−βn)
x1−βn + η1

�(2−ν1)
x1−ν1∑∞

n=0

(
ξn

�(2−βn)
x1−βn + ηn

�(2−νn)
x1−νn

)
= ζ 1−ν1

{
1 −

∑∞
n=2

ηn

�(2−νn)
x1−νn∑∞

n=0

(
ξn

�(2−βn)
x1−βn + ηn

�(2−νn)
x1−νn

)}
,

7
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where ∑∞
n=2

ηn

�(2−νn)
x1−νn∑∞

n=0

(
ξn

�(2−βn)
x1−βn + ηn

�(2−νn)
x1−νn

) � Cx−1+ν1

∞∑
n=2

ηn

�(2 − νn)
x1−νn −→ 0,

as x → ∞. Thus, � ∈ PI.
Now we are within the conditions of the O-version of monotone density theorem ([2],

proposition 2.10.3), which implies the required asymptotic relation (19).
(iii)–(iv) Let us prove (20). The proof of (21) is similar and simpler, and we leave it to the

reader. It is obviously sufficient to deal with the first summand in each element of the series
in (19).

Let us consider the function

ϕ(x) = x−a(log log x)b, x � e, (25)

where a, b > 0. We have

ϕ′(x) = x−a(log log x)b−1ψ(x),

where ψ(x) = b
log x

− a log log x. It is easy to check that ψ decreases on [e,∞), ψ(e) = b,

ψ(x) → −∞, as x → ∞. The maximal value of the function ϕ is attained at a single point
x0 where ψ(x0) = 0, that is

b

log x0
= a log log x0.

Denote y0 = log x0. Then b
y0

= a log y0, so that y0 log y0 = b
a

. We will, in fact, need an
asymptotic behavior of y0 as a function of a, as a → 0. It is known (see section I.5.2 in [8])
that

y0 = log
b

a
− log log

b

a
+ O

(
log log b

a

log b
a

)
.

Therefore,

C1
b

a

(
log

b

a

)−1

� x0 � C2
b

a

(
log

b

a

)−1

, (26)

where the constants do not depend on a, b.
We have ϕ(x) � ϕ(x0), so that, by (25),

x−a � ϕ(x0)

(log log x)b
.

We need an estimate of ϕ(x0) making explicit its dependence on a. By (26),

x−a
0 � C3

(
b

a

)−a (
log

b

a

)a

,

where
(

b
a

)−a = ea log b
a → 1 and

(
log b

a

)a = ea log log b
a → 1, as a → 0. Next, x0 � C4

a
, so that

log log x0 � log

(
log C4 + log

1

a

)
� log

(
C5 log

1

a

)
� C6 log log

1

a

whence ϕ(x0) � C7
(

log log 1
a

)b
.

As a result,
∞∑

n=0

ξn

�(2 − βn)
x−βn � C8

[ ∞∑
n=0

ξn

(
log log

1

βn

)b
]

1

(log log x)b
,

and we have proved (20). �

8
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